会话窗口引擎

会话窗口引擎由 createSessionWindowEngine 函数创建。其语法如下:

createSessionWindowEngine(name, sessionGap, metrics, dummyTable, outputTable, [timeColumn], [useSystemTime=false], [keyColumn], [updateTime], [useSessionStartTime=true], [snapshotDir], [snapshotIntervalInMsgCount], [raftGroup], [forceTriggerTime])

createSessionWindowEngine 的参数绝大多数与 createTimeSeriesEngine 一样,只有 sessionGapuseSessionStartTime 是它独有的参数。sessionGap 决定了一个会话窗口何时结束,useSessionStartTime 决定了输出表时间列的时间为各个窗口的起始时刻还是结束时刻。

其他参数的详细含义可以参考:createSessionWindowEngine

计算规则

若某条数据之后,经过 sessionGap 指定的时间长度内,没有新数据到来,就进行一次窗口截断(以截断前最后一条数据的时间戳 + sessionGap 作为窗口的结束时刻)。窗口结束后新到来的一条数据将触发该窗口的计算。

注: 若指定了 keyColumn,则按照分组分别进行窗口计算。

应用例子 1

share streamTable(1000:0, `time`sym`volume, [TIMESTAMP, SYMBOL, INT]) as trades
output1 = table(10000:0, `time`sym`sumVolume, [TIMESTAMP, SYMBOL, INT])
engine_sw = createSessionWindowEngine(name = "engine_sw", sessionGap = 5, metrics = <sum(volume)>, dummyTable = trades, outputTable = output1, timeColumn = `time, keyColumn=`sym)
subscribeTable(tableName="trades", actionName="append_engine_sw", offset=0, handler=append!{engine_sw}, msgAsTable=true)

n = 5
timev = 2018.10.12T10:01:00.000 + (1..n)
symv=take(`A`B`C,n)
volumev = (1..n)%1000
insert into trades values(timev, symv, volumev)

n = 5
timev = 2018.10.12T10:01:00.010 + (1..n)
volumev = (1..n)%1000
symv=take(`A`B`C,n)
insert into trades values(timev, symv, volumev)

n = 6
timev = 2018.10.12T10:01:00.020 + 1 2 3 8 14 20
volumev = (1..n)%1000
symv=take(`A`B`C,n)
insert into trades values(timev, symv, volumev)

select * from output1;

输出返回:

time

sym

volume

2018.10.12T10:01:00.001 A 5
2018.10.12T10:01:00.002 B 7
2018.10.12T10:01:00.003 C 3
2018.10.12T10:01:00.011 A 5
2018.10.12T10:01:00.012 B 7
2018.10.12T10:01:00.013 C 3
2018.10.12T10:01:00.021 A 1
2018.10.12T10:01:00.022 B 2
2018.10.12T10:01:00.023 C 3

指定 forceTriggerTime 为1000ms,收到最后一条消息后,经过 1000ms,触发所有分组数据计算输出。用以下代码替换上述引擎创建部分的代码。

engine_sw = createSessionWindowEngine(name = "engine_sw", sessionGap = 5, metrics = <sum(volume)>, dummyTable = trades, outputTable = output1, timeColumn = `time, keyColumn=`sym, forceTriggerTime=1000)

再次查询输出表,可以得到以下结果:

time

sym

volume

2018.10.12T10:01:00.001 A 5
2018.10.12T10:01:00.002 B 7
2018.10.12T10:01:00.003 C 3
2018.10.12T10:01:00.011 A 5
2018.10.12T10:01:00.012 B 7
2018.10.12T10:01:00.013 C 3
2018.10.12T10:01:00.021 A 1
2018.10.12T10:01:00.022 B 2
2018.10.12T10:01:00.023 C 3
2018.10.12T10:01:00.028 A 4
2018.10.12T10:01:00.034 B 5
2018.10.12T10:01:00.040 C 6