table#
- swordfish.table(data: Any = None, *, types: Dict[str, DataType | str] = None) Table#
- swordfish.table(data: Any = None, *, names: List[str] = None, types: List[DataType | str] = None) Table
- swordfish.table(*, types: Dict[str, DataType | str] = None, size: int = 0, capacity: int = 1) Table
- swordfish.table(*, names: List[str] = None, types: List[DataType | str] = None, size: int = 0, capacity: int = 1) Table
- swordfish.table(data: str) Table
Creates or retrieves a Swordfish Table using various initialization methods.
There are multiple modes of initialization:
- If
datais a string, it retrieves a shared Swordfish Table by its name.
- If
- If
datais provided (and not a string), it converts the given Python object into a Table, optionally using
typesandnames.
- If
- If
namesandtypesare provided (withoutdata), an empty Table is created with the given column names, types, size, and capacity.
- If
- If
typesis provided as a dictionary (withoutdata), an empty Table is created using the given column types, size, and capacity.
- If
- Parameters:
data (Any, optional) – The data to initialize the Table. Can be a Python dict, Pandas DataFrame, or a str referring to a shared Table. Defaults to None.
names (List[str], optional) – The column names for the Table (used when
datais provided). Defaults to None.types (Union[TypeDict, TypeList], optional) – A mapping of column names to their respective data types, or a list of types matching
names. Defaults to None.size (int, optional) – The initial number of rows in the Table (used when creating an empty Table). Defaults to 0.
capacity (int, optional) – The initial allocated capacity for storing rows in the Table (used when creating an empty Table). Defaults to 1.
- Returns:
A Swordfish Table initialized based on the provided arguments.
- Return type:
Examples
- Retrieving a shared Table by name:
>>> import swordfish as sf >>> table = sf.table("shared_table_name")
- Creating a Table from a Python dictionary with type mapping:
>>> my_dict = { ... "id": [1, 2, 3, 4], ... "name": ["Alice", "Bob", "Charlie", "David"], ... "age": [25, 30, 35, 40], ... } >>> column_types = { ... "id": "LONG", ... "name": "STRING", ... "age": "INT", ... } >>> t = sf.table(my_dict, types=column_types) >>> t id name age -- ------- --- 1 Alice 25 2 Bob 30 3 Charlie 35 4 David 40
- Creating a Table using column names and types:
>>> t = sf.table(data=my_dict, names=["id", "name", "age"], ... types=["LONG", "STRING", "INT"]) >>> t id name age -- ------- ---
- Creating an empty Table with column names, types, and initial size:
>>> t = sf.table(names=["id", "name", "age"], types=["INT", "STRING", ... "INT"], size=5, capacity=10) >>> t id name age -- ------- ---
- Creating an empty Table using a type dictionary:
>>> t = sf.table(types=column_types, size=5, capacity=10) >>> t id name age -- ------- ---